In the News
Research Keywords
These keywords and phrases come from the publications and other research output of this person. See other researchers related to these topics by clicking on any keyword.
Recent Publications
Data-driven evaluation of building materials using Ground Penetrating Radar
Alam, A. N., Reinhart, W. F. & Napolitano, R. K., Oct 15 2024, In: Journal of Building Engineering. 95, 110188.Research output: Contribution to journal › Article › peer-review
Design and validation of refractory alloys using machine learning, CALPHAD, and experiments
Li, W., Raman, L., Debnath, A., Ahn, M., Lin, S., Krajewski, A. M., Shang, S., Priya, S., Reinhart, W. F., Liu, Z. K. & Beese, A. M., Jun 2024, In: International Journal of Refractory Metals and Hard Materials. 121, 106673.Research output: Contribution to journal › Article › peer-review
Crystal growth characterization of WSe2 thin film using machine learning
Moses, I. A., Wu, C. & Reinhart, W. F., Jun 2024, In: Materials Today Advances. 22, 100483.Research output: Contribution to journal › Article › peer-review
Quantitative analysis of MoS2 thin film micrographs with machine learning
Moses, I. A. & Reinhart, W. F., Mar 2024, In: Materials Characterization. 209, 113701.Research output: Contribution to journal › Article › peer-review
Comparing forward and inverse design paradigms: A case study on refractory high-entropy alloys
Debnath, A., Raman, L., Li, W., Krajewski, A. M., Ahn, M., Lin, S., Shang, S., Beese, A. M., Liu, Z. K. & Reinhart, W. F., Sep 14 2023, In: Journal of Materials Research. 38, 17, p. 4107-4117 11 p.Research output: Contribution to journal › Article › peer-review
Investigating representation schemes for surrogate modeling of High Entropy Alloys
Debnath, A. & Reinhart, W. F., Oct 25 2023, In: Computational Materials Science. 230, 112460.Research output: Contribution to journal › Article › peer-review
Displacement-based structural identification using differentiable physics
Rahnamay Farnod, B., Reinhart, W. F. & Napolitano, R. K., Oct 15 2023, In: Engineering Structures. 293, 116632.Research output: Contribution to journal › Article › peer-review
WIP: Enhancing Workforce Development of Data Science Skills within Domain-Specific Programs
Solnosky, R. L., Napolitano, R. & Reinhart, W. F., Jun 25 2023, In: ASEE Annual Conference and Exposition, Conference Proceedings.Research output: Contribution to journal › Conference article › peer-review
Predicting aggregate morphology of sequence-defined macromolecules with recurrent neural networks
Bhattacharya, D., Kleeblatt, D. C., Statt, A. & Reinhart, W. F., Jun 15 2022, In: Soft matter. 18, 27, p. 5037-5051 15 p.Research output: Contribution to journal › Article › peer-review
T -operator limits on optical communication: Metaoptics, computation, and input-output transformations
Molesky, S., Chao, P., Mohajan, J., Reinhart, W., Chi, H. & Rodriguez, A. W., Mar 2022, In: Physical Review Research. 4, 1, 013020.Research output: Contribution to journal › Article › peer-review
Crack detection in images of masonry using cnns
Hallee, M. J., Napolitano, R. K., Reinhart, W. F. & Glisic, B., Jul 2 2021, In: Sensors. 21, 14, 4929.Research output: Contribution to journal › Article › peer-review
Smart cities built with smart materials
Napolitano, R., Reinhart, W. & Gevaudan, J. P., Mar 19 2021, In: Science. 371, 6535, p. 1200-1201 2 p.Research output: Contribution to journal › Review article › peer-review
Opportunities and Challenges for Inverse Design of Nanostructures with Sequence Defined Macromolecules
Reinhart, W. F. & Statt, A., Sep 24 2021, In: Accounts of Materials Research. 2, 9, p. 697-700 4 p.Research output: Contribution to journal › Comment/debate › peer-review
Unsupervised learning of atomic environments from simple features
Reinhart, W. F., Aug 2021, In: Computational Materials Science. 196, 110511.Research output: Contribution to journal › Article › peer-review
Unsupervised learning of sequence-specific aggregation behavior for a model copolymer
Statt, A., Kleeblatt, D. C. & Reinhart, W. F., Sep 7 2021, In: Soft matter. 17, 33, p. 7697-7707 11 p.Research output: Contribution to journal › Article › peer-review