Vasant Honavar

Affiliate Researcher
Titles and Affiliations
Professor and Edward Frymoyer Chair of Information Sciences and Technology, College of Information Sciences and Technology

Research Summary

My current research is focused on the development of algorithms for building predictive and causal models from large amounts of heterogeneous, high dimensional, spatial, temporal, multi-scale data and the application of the resulting tools in predicting health risks and health outcomes using combinations of clinical, genomic, behavioral, environmental, and socio-demographic data, modeling complex interactions between food, energy, and water systems, and people.

In the News

Research Keywords

Recent Publications

Class Incremental Learning from First Principles: A Review

Ashtekar, N., Zhu, J. & Honavar, V. G., 2025, In: Transactions on Machine Learning Research. 2025

Research output: Contribution to journalArticlepeer-review

C-HDNet: A Fast Hyperdimensional Computing Based Method for Causal Effect Estimation from Networked Observational Data

Dalvi, A., Ashtekar, N. & Honavar, V. G., Dec 2025, In: Social Network Analysis and Mining. 15, 1, 97.

Research output: Contribution to journalReview articlepeer-review

A practical guide to machine learning interatomic potentials – Status and future

Jacobs, R., Morgan, D., Attarian, S., Meng, J., Shen, C., Wu, Z., Xie, C. Y., Yang, J. H., Artrith, N., Blaiszik, B., Ceder, G., Choudhary, K., Csanyi, G., Cubuk, E. D., Deng, B., Drautz, R., Fu, X., Godwin, J., Honavar, V. & Isayev, O. & 10 others, Johansson, A., Martiniani, S., Ong, S. P., Poltavsky, I., Schmidt, K. J., Takamoto, S., Thompson, A. P., Westermayr, J., Wood, B. M. & Kozinsky, B., Mar 2025, In: Current Opinion in Solid State and Materials Science. 35, 101214.

Research output: Contribution to journalReview articlepeer-review

Beyond training data: how elemental features enhance ML-based formation energy predictions

Mahdavi, H., Honavar, V. & Morgan, D., Oct 8 2025, In: Digital Discovery. 4, 10, p. 2972-2982 11 p.

Research output: Contribution to journalArticlepeer-review

Causal Matching using Random Hyperplane Tessellations

Dalvi, A., Ashtekar, N. & Honavar, V., 2024, In: Proceedings of Machine Learning Research. 236, p. 688-702 15 p.

Research output: Contribution to journalConference articlepeer-review

Can machine learning predict late seizures after intracerebral hemorrhages? Evidence from real-world data

Lekoubou, A., Petucci, J., Femi Ajala, T., Katoch, A., Hong, J., Sen, S., Bonilha, L., Chinchilli, V. M. & Honavar, V., Aug 2024, In: Epilepsy and Behavior. 157, 109835.

Research output: Contribution to journalArticlepeer-review

Inducing Clusters Deep Kernel Gaussian Process for Longitudinal Data

Liang, J., Ren, W., Sahar, H. & Honavar, V., Mar 25 2024, In: Proceedings of the AAAI Conference on Artificial Intelligence. 38, 12, p. 13736-13743 8 p.

Research output: Contribution to journalConference articlepeer-review

Real world study of racial disparities associated with toxicities of sacituzumab govitecan

Priyadarshini, S., Petucci, J., Katoch, A., Honavar, V. & Vasekar, M. K., 2024, In: Journal of Clinical Oncology. 42, 16, 1572.

Research output: Contribution to journalArticlepeer-review

TabLog: Test-Time Adaptation for Tabular Data Using Logic Rules

Ren, W., Li, X., Chen, H., Rakesh, V., Wang, Z., Das, M. & Honavar, V., 2024, In: Proceedings of Machine Learning Research. 235, p. 42417-42427 11 p.

Research output: Contribution to journalConference articlepeer-review

Corrigendum to “Performance of an open machine learning model to classify sleep/wake from actigraphy across ∼24-hour intervals without knowledge of rest timing” [Sleep Health 9 (2023) 596-610, (S2352721823001341), (10.1016/j.sleh.2023.07.001)]

Roberts, D. M., Schade, M. M., Master, L., Honavar, V. G., Nahmod, N. G., Chang, A. M., Gartenberg, D. & Buxton, O. M., 2024, (Accepted/In press) In: Sleep health. 10, 2, p. 255-260 6 p.

Research output: Contribution to journalComment/debatepeer-review

Cal-DPO: Calibrated Direct Preference Optimization for Language Model Alignment

Xiao, T., Yuan, Y., Zhu, H., Li, M. & Honavar, V. G., 2024, In: Advances in Neural Information Processing Systems. 37

Research output: Contribution to journalConference articlepeer-review

Efficient Contrastive Learning for Fast and Accurate Inference on Graphs

Xiao, T., Zhu, H., Zhang, Z., Guo, Z., Aggarwal, C. C., Wang, S. & Honavar, V. G., 2024, In: Proceedings of Machine Learning Research. 235, p. 54363-54381 19 p.

Research output: Contribution to journalConference articlepeer-review

Forecasting User Interests Through Topic Tag Predictions in Online Health Communities

Adishesha, A. S., Jakielaszek, L., Azhar, F., Zhang, P., Honavar, V., Ma, F., Belani, C., Mitra, P. & Huang, S. X., Jul 1 2023, In: IEEE Journal of Biomedical and Health Informatics. 27, 7, p. 3645-3656 12 p.

Research output: Contribution to journalArticlepeer-review

MetaScore: A Novel Machine-Learning-Based Approach to Improve Traditional Scoring Functions for Scoring Protein–Protein Docking Conformations

Jung, Y., Geng, C., Bonvin, A. M. J. J., Xue, L. C. & Honavar, V. G., Jan 2023, In: Biomolecules. 13, 1, 121.

Research output: Contribution to journalArticlepeer-review

Performance of an open machine learning model to classify sleep/wake from actigraphy across ∼24-hour intervals without knowledge of rest timing

Roberts, D. M., Schade, M. M., Master, L., Honavar, V. G., Nahmod, N. G., Chang, A.-M., Gartenberg, D. & Buxton, O. M., Aug 10 2023, (E-pub ahead of print) In: Sleep health.

Research output: Contribution to journalArticlepeer-review