Research Summary
My current research is focused on the development of algorithms for building predictive and causal models from large amounts of heterogeneous, high dimensional, spatial, temporal, multi-scale data and the application of the resulting tools in predicting health risks and health outcomes using combinations of clinical, genomic, behavioral, environmental, and socio-demographic data, modeling complex interactions between food, energy, and water systems, and people.In the News
Research Keywords
These keywords and phrases come from the publications and other research output of this person. See other researchers related to these topics by clicking on any keyword.
Recent Publications
Causal Matching using Random Hyperplane Tessellations
Dalvi, A., Ashtekar, N. & Honavar, V., 2024, In: Proceedings of Machine Learning Research. 236, p. 688-702 15 p.Research output: Contribution to journal › Conference article › peer-review
Can machine learning predict late seizures after intracerebral hemorrhages? Evidence from real-world data
Lekoubou, A., Petucci, J., Femi Ajala, T., Katoch, A., Hong, J., Sen, S., Bonilha, L., Chinchilli, V. M. & Honavar, V., Aug 2024, In: Epilepsy and Behavior. 157, 109835.Research output: Contribution to journal › Article › peer-review
Inducing Clusters Deep Kernel Gaussian Process for Longitudinal Data
Liang, J., Ren, W., Sahar, H. & Honavar, V., Mar 25 2024, In: Proceedings of the AAAI Conference on Artificial Intelligence. 38, 12, p. 13736-13743 8 p.Research output: Contribution to journal › Conference article › peer-review
Corrigendum to “Performance of an open machine learning model to classify sleep/wake from actigraphy across ∼24-hour intervals without knowledge of rest timing” [Sleep Health 9 (2023) 596-610, (S2352721823001341), (10.1016/j.sleh.2023.07.001)]
Roberts, D. M., Schade, M. M., Master, L., Honavar, V. G., Nahmod, N. G., Chang, A. M., Gartenberg, D. & Buxton, O. M., 2024, (Accepted/In press) In: Sleep health. 10, 2, p. 255-260 6 p.Research output: Contribution to journal › Comment/debate › peer-review
Forecasting User Interests Through Topic Tag Predictions in Online Health Communities
Adishesha, A. S., Jakielaszek, L., Azhar, F., Zhang, P., Honavar, V., Ma, F., Belani, C., Mitra, P. & Huang, S. X., Jul 1 2023, In: IEEE Journal of Biomedical and Health Informatics. 27, 7, p. 3645-3656 12 p.Research output: Contribution to journal › Article › peer-review
MetaScore: A Novel Machine-Learning-Based Approach to Improve Traditional Scoring Functions for Scoring Protein–Protein Docking Conformations
Jung, Y., Geng, C., Bonvin, A. M. J. J., Xue, L. C. & Honavar, V. G., Jan 2023, In: Biomolecules. 13, 1, 121.Research output: Contribution to journal › Article › peer-review
Performance of an open machine learning model to classify sleep/wake from actigraphy across ∼24-hour intervals without knowledge of rest timing
Roberts, D. M., Schade, M. M., Master, L., Honavar, V. G., Nahmod, N. G., Chang, A.-M., Gartenberg, D. & Buxton, O. M., Aug 10 2023, (E-pub ahead of print) In: Sleep health.Research output: Contribution to journal › Article › peer-review
Feeding the machine: Challenges to reproducible predictive modeling in resting-state connectomics
Cwiek, A., Rajtmajer, S. M., Wyble, B., Honavar, V., Grossner, E. & Hillary, F. G., Feb 1 2022, In: Network Neuroscience. 6, 1, p. 29-48 20 p.Research output: Contribution to journal › Article › peer-review
Detecting and Interpreting Changes in Scanning Behavior in Large Network Telescopes
Kallitsis, M., Prajapati, R., Honavar, V., Wu, D. & Yen, J., 2022, In: IEEE Transactions on Information Forensics and Security. 17, p. 3611-3625 15 p.Research output: Contribution to journal › Article › peer-review
Connected in health: Place-to-place commuting networks and COVID-19 spillovers
Seto, C. H., Graif, C., Khademi, A., Honavar, V. G. & Kelling, C. E., Sep 2022, In: Health and Place. 77, 102891.Research output: Contribution to journal › Article › peer-review
IScore: A novel graph kernel-based function for scoring protein-protein docking models
Geng, C., Jung, Y., Renaud, N., Honavar, V., Bonvin, A. M. J. J. & Xue, L. C., Jan 1 2020, In: Bioinformatics. 36, 1, p. 112-121 10 p.Research output: Contribution to journal › Article › peer-review
Two-dimensional hybrid organic-inorganic perovskites as emergent ferroelectric materials
Hou, Y., Wu, C., Yang, D., Ye, T., Honavar, V. G., Van Duin, A. C. T., Wang, K. & Priya, S., Aug 14 2020, In: Journal of Applied Physics. 128, 6, 060906.Research output: Contribution to journal › Review article › peer-review
The Virtual Data Collaboratory: A Regional Cyberinfrastructure for Collaborative Data-Driven Research
Parashar, M., Simonet, A., Rodero, I., Ghahramani, F., Agnew, G., Jantz, R. & Honavar, V., May 1 2020, In: Computing in Science and Engineering. 22, 3, p. 79-92 14 p., 8686134.Research output: Contribution to journal › Article › peer-review
iScore: An MPI supported software for ranking protein–protein docking models based on a random walk graph kernel and support vector machines
Renaud, N., Jung, Y., Honavar, V., Geng, C., Bonvin, A. M. J. J. & Xue, L. C., Jan 1 2020, In: SoftwareX. 11, 100462.Research output: Contribution to journal › Article › peer-review
Biomarker discovery in inflammatory bowel diseases using network-based feature selection
Abbas, M., Matta, J., Le, T., Bensmail, H., Obafemi-Ajayi, T., Honavar, V. & EL-Manzalawy, Y., Nov 1 2019, In: PloS one. 14, 11, e0225382.Research output: Contribution to journal › Article › peer-review